3 系统软件设计
系统软件设计主程序如图4所示,丘陵无线传感网络程序图如图5所示,地区的研数据无线传输如图6所示。农田
4 系统参数设计
4.1 APP参数
APP的土壤实现主要采用UI设计法和程序编译法。本研究的信息系统APP服务系统总体上分为手机客户端APP端和服务器端Server端,其结构如图7所示。监测究
研究中的丘陵数据表大致可分为用户信息表和监测数据信息表。其中,地区的研用户信息表主要用来存放该系统中所有用户的农田项目信息,表中的土壤某些字段可以为空,如表1所示。信息系统监测数据信息表主要用来存放和交互山地墒情和酸碱度监测得到的监测究数据,如表2所示。丘陵
4.2 土壤酸碱度数据获取
土壤酸碱度(pH值)数据主要取决于检测溶液中氢离子的地区的研浓度,利用公式(1)进行pH值的农田检测,即
pH= E0-EC/54.2+0.1984t+7 (1)
其中,E0为电极零电位,EC为测量电极的电位,t为实时摄氏温度。电极检测氢离子浓度设置两个玻璃电极,基准电极的电位E0始终保持不变,测量电极对氢离子产生相应的影响,测量电极电位EC随着氢离子的浓度变化而变化,从而通过监测电极的电位及当前土壤温度实现土壤酸碱度的实时监测。
4.3 土壤墒情数据获取
土壤墒情的获取依赖于土壤水分传感器采集的信号电压与控制中心构成的土壤水分传感器的标定。通过烘干法重复试验,获取土壤含水率与土壤水分传感器的输出电压之间的关系,即
y=-1.638u2+15.174u-6.452 (2)
其中,y为土壤含水率,u为土壤水分传感器的输出电压。通过检测土壤水分传感器的输出电压,即可检测出土壤含水率,从而得到土壤相对含水量。
5 系统效果及创新点
5.1 系统效果
为了验证土壤信息监测系统的稳定性和精度,2019年7月对系统进行实地试验,如图8所示。
系统测试数据如表3所示。
5.2 系统创新点
1)根据复杂山地的区域、高差及坡度不同,设计了分区的土壤墒情及酸碱度监测系统,区别于传统统一监测,有效地节约了水资源及人力资源。
2)系统结合当前“互联网+”及智能移动终端的概念,将APP有机地融入到农业生产中,弥补传统固定终端的不足,为数字农业、智能农业提供借鉴。
6 结论
研究的丘陵地区农田土壤信息监测系统,结合“互联网+”及APP,针对西南丘陵地区山地坡度和高差不同影响农业生产的问题,可以对山地农田土壤信息监测,对农田土壤进行分区墒情及酸碱度监测。试验结果表明:系统运行稳定,实现了山地分区域进行墒情及酸碱度的实时监测,完成了APP与农业生产的有效融合,达到了系统设计的目的,有效提高了西南地区山地农作物产量,很大程度地为实现智能农业发展提供参考。
声明:本文所用图片、文字来源《农机化研究》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系
相关链接:检测,土壤,监测
深圳海边度假村有哪些好玩
印度海关对华及阿联酋玻璃器具征收反倾销税,政策解读
立体玻璃的收藏前景可观,市场研究
北方惟一超白压太阳能玻璃生产基地在承德落户,行业资讯
15亿!两大玻璃基板项自签约南浔,企业经营
多方专家为药企代表“答疑解惑” “药品检查浙里帮”活动圆满结束
太阳能光伏玻璃行业迎来发展机遇,市场研究
面板生产商削减第三季度产能,市场研究
中央网信办部署开展“清朗•同城版块信息内容问题整治”专项行动 重点整治5类问题
全部光伏产业变动的四大发展趋势,市场研究
温企出口因印度耐热玻璃器皿反倾销案终裁而将受影响,行业资讯
国内纯碱价格行情分析,市场研究
氯化钠溶液:广泛应用于科研与医疗领域
2011年华东等地区玻璃企业第七次市场研讨会会议纪要,企业新闻
康宁公司再次入选道琼斯大部分国家可持续发展企业名单,企业新闻